COA 690/790 GIS in Marine Science

Lecture 7
 Basic Spatial Analysis

Wei Wu
March 19, 2019

Spatial data analysis

Input -> spatial operation -> output

Spatial data analysis

Usually involves manipulations or calculation of coordinates or attribute variables with a various operators (tools), such as:

Selection

Reclassification
Dissolving
Buffering
Overlay
Cartographic Modeling (a combination of the above)

Spatial Selection

Identifying features based on spatial criteria
Adjacency, connectivity, containment, arrangement

Spatial Selection

Identifying features based on spatial criteria Adjacency, connectivity, containment, arrangement

Selection based on spatial and non-spatial attributes

States larger than $84,000 \mathrm{sq}$. km

States both entirely north of Arkansas and
arger than 84,000 sq. km

Adjacency depends on the algorithm used (the same is true for all spatial operations)

Adjacency

- shared line required

Adjacency

- shared node or line required

Spatial data analysis

Usually involves manipulations or calculation of coordinates or attribute variables with a various operators (tools), such as:

Selection
Reclassification
Dissolving
Buffering
Overlay
Cartographic Modeling (a combination of the above)

Spatial data analysis:
Reclassification

An assignment of a class or value based on the attributes or geography o an object

Example:
Parcels
Reclassified
By size

Spatial data analysis: Reclassification

Spatial data analysis: reclassification defining categories

Spatial data analysis

Usually involves manipulations or calculation of coordinates or attribute variables with a various operators (tools), such as:

Selection
Reclassification
Dissolving
Buffering
Overlay
Cartographic Modeling (a combination of the above)

Spatial data analysis :dissolve

A function whose primary purpose is to combine like features within a data layer.

Adjacent polygons may have identical values. Dissolve removes or "dissolves away" the common boundary.

Used prior to applying area-based selection in spatial analysis

Spatial data analysis

Usually involves manipulations or calculation of coordinates or attribute variables with a various operators (tools), such as:

Selection
Reclassification
Dissolving
Buffering
Overlay
Cartographic Modeling (a combination of the above)

Buffering and other Proximity Functions

Buffering and other Proximity Functions

Raster buffer is an array of distances

distance $=15$ units					
distance from nearest target cell					$\xrightarrow{10}$ units
28	20	10	0	10	20
20	14	10	0	10	20
10	10	0	0	10	20
0	0	0	10	14	22
0	10	10	14	22	28
0	10	20	22	28	36

reclassed reclassed reclassed as out as in as in

Vector Buffers

Mechanics of Point and Line Buffering

Buffering Variants: point buffer examples

Variable-distance buffer: a line buffer is shown with a variable buffer distance, 100 km from main stem of the Mississippi River, 75 km from larger tributaries, and 50 km from remaining tributaries.

river_identifier	buffdist
mississippi	100
missouri	50
arkansas	50
ohio	75
tennessee	75

Regions in Buffering - inside, outside, enclosed

Spatial data analysis

Reclassification
Dissolving
Buffering

Overlay

Cartographic Modeling
(a combination of the above)

Spatial Analysis: Overlay

Combination of different data layers Both spatial and attribute data is combined

Requires that data layers use a common coordinate system

A new data layer is created

Figure 10-30: Overlain raster layers should be compatible to ensure unambiguous overlay. Cell orientation should be coincident and cell size should be compatible. In the overlay
depicted here it is not clear which cells from Layer_2 should be combined with cell A in Layer_1.

Overlay

Raster Overlay

Typically applied to nominal or ordinal data
Cell by cell process which results in the combination of the two input layers

Pay attention to the the number of possible combinations that may be possible and understand the effect on the output layer

Input layer 1

Attribute data
Type soil_name

Figure 10-31: Cell-by-cell combination in raster overlay. Two input layers are combined in raster overlay. Nominal variables for corresponding cells are joined, creating a new output layer. In this example a soils layer (left) is combined with a land use layer (center) to create a composite output layer (right).

Feature numbers increase in overlay

Vector Overlay

-Topology is likely to be different

- Vector overlays often identifies line intersection points automatically.
- Intersecting lines are split and a node placed at the intersection point
-Topology must be recreated for later processing

Any type of vector may be overlain with any other type Output typically takes the lowest dimension of the inputs For example: Point on Polygon results in a point

Vector Overlay

(common ways applied)
-CLIP
-INTERSECTION
-UNION

CLIP

-Cookie cutter approach
-Bounding polygon defines the clipped second layer
-Neither the bounding polygon attributes nor geographic (spatial data) are included in the output layer

INTERSECTION

-Combines data from both layers
Features or portions of features which overlap in all layers will be written to the output feature.

- Order of intersection is not important

UNION

-Includes all data from both the bounding and data layers

- New polygons are formed by the combinations of the coordinate data from each layer

Why do buffering and vector overlay often take so long?

Because a time consuming line intersection test must be performed for all lines in the data layers

Then, inside vs. outside regions must be identified for all new polygons

Does polygon A intersect/overlap/overlay polygon B ?

We must check each line in one data layer against every other line in the second data layer to see if they intersect

Remember each line is composed $(x 2, y 2)$ of a linked set of straight line segments defined by a vertex or a node at each end
(x1,y1)

We can use the equation for a line, plus the coordinates at the endpoints to define the line, and use algebra and logic to see if the lines intersect

Equation of a line: $y=m * X+b$

Line Intersection Calculations

Line Equation $y=m_{1} x+b_{1}$

Line Equation

$$
y=m_{2} x+b_{2}
$$

1) Calculate Equation Parameters

$$
\begin{array}{rl}
m_{1}=\text { slope }=(12-1) /(10-2) & m_{2}=\text { slope }=(4-2) /(7-9) \\
=1.375 & =-1 \\
b_{1}=y-m_{1} x & b_{2}=y-m_{2} x \\
=12-10 * 1.375 & =4-(-1)^{*} 7 \\
=-1.75 & =11 \\
y=1.375 * x-1.75 & y=-1 * x+11
\end{array}
$$

2) Find Intersection Point

$$
Y=1.375 * x-1.75 \quad y=-1 * x+11
$$

Set y values equal

$$
\begin{aligned}
& y=1.375 * x-1.75=-1 * x+11 \\
& \begin{array}{c}
(1.375+1) * x=11+1.75 \\
x=12.75 / 2.375 \\
=5.37
\end{array} \\
& y=1.375 * 5.37-1.75=5.63
\end{aligned}
$$

Potential Intersection Point at $x=5.37, y=5.63$
3) Verify Intersection: Is it Within the Boxes'

Test X :
is $5.37>2$ and < 10 Yes
is $5.37>7$ and $<9 \quad$ No
Test Y:
is $5.63>1$ and <12 Yes
is $5.63>2$ and < 4 No

Answer: No, the lines do not intersect

Vector Overlay

Common features in Vector overlays create "Slivers" or "Sliver polygons"

A common feature in both layers. The problem is that each definition is very subtly different (different time, source, materials) so the polygons don't line up. They can only be seen a very large display scale but can represent over half the output polygons. They take very little space but affect analytical results.

Methods to reduce/remove slivers:

-Redefine the common boundaries with highest coordinate accuracy and replace them in all layers before overlay -Manually identify and remove -Use snap distance during overlay

