

Raster Analysis

Raster cells store data (nominal, ordinal, interval/ratio) Complex constructs built from raster data Connected cells can be formed in to networks

Related cells can be grouped into neighborhoods or regions

Examples:

Predict fate of pollutants in the atmosphere The spread of disease Animal migrations Crop yields EPA - hazard analysis of urban superfund sites Local to global scale forest growth analysis

	Function	Description
Local Functions	Add, subtract, multiply, and divide	cell-by-cell combination with the arithmetic operation
	ABS	Absolute value of each cell
	EXP, EXP10, LN, LN10	Applies base e and base 10 exponentiation and logarithms
	SIN, COS, TAN, ASIN, ACOS, ATAN	Apply trigonometric functions on a cell-by- cell basis
	INT, TRUNC	Truncate cell values, output integer portion
	MODULUS	Assigns the decimal portion of each cell
	ROUND	Rounds a cell value up or down to nearest inte- ger value
	SQRT, ROOT	Calculates the square root or specifies other root of each cell value
	POWER	Raises each cell to a defined power

				Log	ical	Op AN	oera D	itior	าร					
Non-zero values are "true", zero values are "false" N = null values														
Input Output														
1	3	1	1		0	1	0	9		0	1	0	1	
0	Ν	2	-1		0	5	2	5	_	0	Ν	1	1	
1	2	5	0		0	2	Ν	2	-	0	1	Ν	0	
0	1	Ν	Ν		0	-3	4	8		0	1	Ν	Ν	
	N.				Į									

Raster Analysis

Moving windows and kernels can be used with a mean kernel to reduce the difference between a cell and surrounding cells. (done by average across a group of cells)

Raster data may also contain "noise"; values that are large or small relative to their spatial context. (Noise often requiring correction or smooth(ing))

Know as "high-pass" filters

The identified spikes or pits can then be corrected or removed by editing

	Ir	nput	t lay	/er	wit	h "	noi	se"									
\frown	1065	1068	929	864	960	1113	974	896	890	841	759	719	705	696	720	708	
kannal fan	1038	963	947	950	999	1021	1011	1015	995	1044	870	773	734	703	676	684	
high-pass filter	1142	1005	1151	310	1117	1056	1007	1002	902	954	935	913	789	756	724	700	
1 -1 -1 -1	1116	1114	1270	1165	1097	1025	922	917	821	829	860	838	807	810	758	760	
$\frac{1}{9} \times \frac{-1}{9} \frac{9}{-1} \frac{-1}{-1}$	1275	1170	1295	1114	1009	942	953	847	835	729	738	797	723	718	694	670	
/	1441	1263	1196	1055	913	869	829	771	736	765	766	688	694	1676	684	698	
	1348	2900	1056	969	948	951	940	867	818	863	784	732	704	733	776	804	
(1377	1238	1122	1019	1089	950	956	896	2000	800	760	698	779	867	896	744	
4	1489	1320	1188	1152	1050	942	922	952	815	841	721	780	852	28	845	738	
/ (-1)*1065 + \	1432	1415	1196	1100	1001	974	924	911	914	756	809	861	898	830	746	710	
(-1)*1068 +	1412	1474	1240	1100	1001	982	873	835	829	853	931	937	845	706	685	680	
(-1)*929 + (-1)*1038 +	1493	1368	1201	1090	1064	970	902	902	958	952	1015	841	782	803	786	711	
(9)*963 +	1437	1407	118	1145	1070	1107	982	1047	1077	1052	954	884	44	940	828	771	
(-1)*1142 +	1349	1369	1267	1247	1194	1196	1077	1214	1145	999	906	894	1024	1046	923	862	1
(-1)*1005 + (-1)*1151	1319	1292	1378	1400	1367	1276	1162	1088	961	930	872	985	1010	1178	1148	1000	
$\left \frac{9}{9} \right -$	_	•	35.7	7		sp	oikes	;				oits					

	/	0	upu	t la	yer	1											
	► = 35.7																
		→	35	142	141	177	105	112	162	156	250	99	59	61	58	43	
			33	292	-657	270	145	121	158	60	147	148	179	85	89	74	
			66	345	235	237	124	61	107	41	76	111	108	102	146	110	
			62	256	114	100	95	161	93	122	23	41	117	-58	-43	-59	
-11			-35	-7	110	40	37	35	12	14	68	88	28	-59	1039	-69	
1			1784	-140	35	79	118	152	-16	-38	37	109	79	-59	-54	-14	No.
112			-74	-83	66	202	83	131	-23	1238	-45	69	18	179	243	281	1
// Text			158	125	178	135	68	88	25	-82	-1	20	71	214	-718	227	
			220	86	108	78	119	102	126	159	10	66	108	249	207	165	
1 deces			278	135	111	80	125	50	33	42	57	150	161	105	-3	21	= 1
1			281	207	207	123	83	46	68	119	99	192	130	115	179	105	
			340	-1004	228	68	167	47	129	158	162	115	166	-758	247	67	
			306	227	253	104	169	69	265	215	121	64	151	248	257	59	
-																	

		In	put	La	yer	wi [.]	th	"noi	ise"								
		1065 1	1068	929	864	960	1113	974	896	890	841	759	719	705	696	720	708
	♦ kernal for	1038 9	963	947	950	999	1021	1011	1015	995	1044	870	773	734	703	676	684
	mean filter	1142 1	1005	1151	310	1117	1056	1007	1002	902	954	935	913	789	756	724	700
	$\frac{1}{1} \star \frac{1}{1} \frac{1}{1} \frac{1}{1}$	1116 1	1114	1270	1165	1097	1025	922	917	821	829	860	838	807	810	758	760
	9 1 1 1	1275 1	1170	1295	1114	1009	942	953	847	835	729	738	797	723	718	694	670
	,	1441 1	1263	1196	1055	913	869	829	771	736	765	766	688	694	1676	684	698
3		1348 2	2900	1056	969	948	951	940	867	818	863	784	732	704	733	776	804
1.	(1377 1	1238	1122	1019	1089	950	956	896	2000	800	760	698	779	867	896	744
	4	1489 1	1320	1188	1152	1050	942	922	952	815	841	721	780	852	28	845	738
	/ (1)*1065 + \	1432 1	1415	1196	1100	1001	974	924	911	914	756	809	861	898	830	746	710
	(1)*1068 +	1412 1	1474	1240	1100	1001	982	873	835	829	853	931	937	845	706	685	680
	$(1)^{*}1038 + (1)^{*}063) + (1)^{*}063)$	1493 1	1368	1201	1090	1064	970	902	902	958	952	1015	841	782	803	786	711
1	(1)*947 +	1437 1	1407	118	1145	1070	1107	982	1047	1077	1052	954	884	44	940	828	771
	(1)*1005 +	1349 1	1369	1267	1247	1194	1196	1077	1214	1145	999	906	894	1024	1046	923	862
	(1)*1151	1319 1	1292	1378	1400	1367	1276	1162	1088	961	930	872	985	1010	1178	1148	1000
	\/																

l	0	upu	t Lo	aye	r	-					sm spi	ootl ke c	ned or pi	t	
► = 1034															
	\rightarrow	1034	909	914	932	1028	1010	965	948	910	867	799	754	722	707
		1082	986	1000	971	1028	997	954	942	912	890	835	791	750	730
		1170	1066	1058	981	1014	963	911	870	844	843	822	794	753	732
		1237	1182	1123	1021	951	897	847	805	786	778	767	861	840	829
		1438	1335	1061	974	928	885	844	803	781	762	736	829	822	828
Mean filter		1437	1313	1040	973	938	892	979	946	921	761	733	841	867	875
applied		1448	1329	1065	1007	972	930	1018	983	933	775	756	685	720	714
		1308	1194	1101	1030	978	936	1032	987	935	780	795	732	749	711
		1351	1242	1114	1033	963	923	886	856	829	832	848	748	715	663
	-	1359	1242	1110	1031	965	919	894	878	890	883	879	833	786	739
	-	1238	1127	1003	1058	994	955	933	945	957	935	803	753	713	767
		1223	1134	1044	1120	1062	1044	1033	1038	1006	944	816	806	797	852
Note edge erosion	-	1215	1180	1131	1222	1159	1127	1083	1057	988	941	841	889	904	966
0	-														

